Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/10296
Title: Time Window Determination for Inference of Time-Varying Dynamics: Application to Cardiorespiratory Interaction
Authors: Lukarski, Dushko 
Ginovska, Margarita 
Spasevska, Hristina 
Stankovski Tomislav 
Keywords: time-series analysis
dynamical systems
dynamical Bayesian inference
coupled oscillators
coupling functions
Issue Date: 2020
Publisher: Frontiers Media SA
Journal: Frontiers in physiology
Abstract: Interacting dynamical systems abound in nature, with examples ranging from biology and population dynamics, through physics and chemistry, to communications and climate. Often their states, parameters and functions are time-varying, because such systems interact with other systems and the environment, exchanging information and matter. A common problem when analysing time-series data from dynamical systems is how to determine the length of the time window for the analysis. When one needs to follow the time-variability of the dynamics, or the dynamical parameters and functions, the time window needs to be resolved first. We tackled this problem by introducing a method for adaptive determination of the time window for interacting oscillators, as modeled and scaled for the cardiorespiratory interaction. By investigating a system of coupled phase oscillators and utilizing the Dynamical Bayesian Inference method, we propose a procedure to determine the time window and the propagation parameter of the covariance matrix. The optimal values are determined so that the inferred parameters follow the dynamics of the actual ones and at the same time the error of the inference represented by the covariance matrix is minimal. The effectiveness of the methodology is presented on a system of coupled limit-cycle oscillators and on the cardiorespiratory interaction. Three cases of cardiorespiratory interaction were considered-measurement with spontaneous free breathing, one with periodic sine breathing and one with a-periodic time-varying breathing. The results showed that the cardiorespiratory coupling strength and similarity of form of coupling functions have greater values for slower breathing, and this variability follows continuously the change of the breathing frequency. The method can be applied effectively to other time-varying oscillatory interactions and carries important implications for analysis of general dynamical systems.
URI: http://hdl.handle.net/20.500.12188/10296
ISSN: 1664-042X
DOI: 10.3389/fphys.2020.00341
Appears in Collections:Faculty of Medicine: Journal Articles

Show full item record

Page view(s)

48
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.