Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/11871
DC FieldValueLanguage
dc.contributor.authorGJurchinovski, Aleksandaren_US
dc.contributor.authorViktor Urumoven_US
dc.date.accessioned2021-04-15T06:44:57Z-
dc.date.available2021-04-15T06:44:57Z-
dc.date.issued2008-05-27-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/11871-
dc.description.abstractWe report on a dramatic improvement of the performance of the classical time-delayed autosynchronization method (TDAS) to control unstable steady states, by applying a time-varying delay in the TDAS control scheme in a form of a deterministic or stochastic delay-modulation in a fixed interval around a nominal value $T_0$. The successfulness of this variable delay feedback control (VDFC) is illustrated by a numerical control simulation of the Lorenz and R\"{o}ssler systems using three different types of time-delay modulations: a sawtooth wave, a sine wave, and a uniform random distribution. We perform a comparative analysis between the VDFC method and the standard TDAS method for a sawtooth-wave modulation by analytically determining the domains of control for the generic case of an unstable fixed point of focus type.en_US
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.relation.ispartofEPL (Europhysics Letters)en_US
dc.subjectPhysics - General Physicsen_US
dc.subjectPhysics - General Physicsen_US
dc.subjectPhysics - Computational Physicsen_US
dc.titleStabilization of unstable steady states by variable delay feedback controlen_US
dc.typeArticleen_US
dc.identifier.doi10.1209/0295-5075/84/40013-
dc.identifier.urlhttps://iopscience.iop.org/article/10.1209/0295-5075/84/40013/pdf-
dc.identifier.volume84-
dc.identifier.issue4-
dc.identifier.fpage40013-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptFaculty of Natural Sciences and Mathematics-
Appears in Collections:Faculty of Natural Sciences and Mathematics: Journal Articles
Show simple item record

Page view(s)

28
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.