Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/13570
DC FieldValueLanguage
dc.contributor.authorStojanovski, Darioen_US
dc.contributor.authorStrezoski, Gjorgjien_US
dc.contributor.authorMadjarov, Gjorgjien_US
dc.contributor.authorDimitrovski, Ivicaen_US
dc.contributor.authorChorbev, Ivanen_US
dc.date.accessioned2021-06-15T10:50:05Z-
dc.date.available2021-06-15T10:50:05Z-
dc.date.issued2018-06-18-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/13570-
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.titleDeep neural network architecture for sentiment analysis and emotion identification of Twitter messagesen_US
dc.identifier.doi10.1007/s11042-018-6168-1-
dc.identifier.urlhttp://link.springer.com/article/10.1007/s11042-018-6168-1/fulltext.html-
dc.identifier.urlhttp://link.springer.com/content/pdf/10.1007/s11042-018-6168-1.pdf-
dc.identifier.urlhttp://link.springer.com/content/pdf/10.1007/s11042-018-6168-1.pdf-
dc.identifier.volume77-
dc.identifier.issue24-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles
Show simple item record

Page view(s)

53
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.