Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/17140
DC FieldValueLanguage
dc.contributor.authorStojkovikj, Anaen_US
dc.contributor.authorGJorgjevikj, Dejanen_US
dc.contributor.authorIvanovski, Zoranen_US
dc.date.accessioned2022-03-29T12:18:57Z-
dc.date.available2022-03-29T12:18:57Z-
dc.date.issued2016-
dc.identifier.citationStojkovikj, A., Gjorgjevikj, D., Ivanovski, Z. (2016). Machine Learning Approach to Blocking Effect Reduction in Low Bitrate Video. In: Loshkovska, S., Koceski, S. (eds) ICT Innovations 2015 . ICT Innovations 2015. Advances in Intelligent Systems and Computing, vol 399. Springer, Cham. https://doi.org/10.1007/978-3-319-25733-4_18en_US
dc.identifier.issn978-3-319-25733-4-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/17140-
dc.description.abstractThis work presents an approach for blocking artifacts removal in highly compressed video sequences using an algorithm based on dictionary learning methods. In this approach only the information from the frame content is used, without any additional information from the coded bit-stream. The proposed algorithm adapts the dictionary to the spatial activity in the image, by that avoiding unnecessary blurring of regions of the image containing high spatial frequencies. The algorithms effectiveness is demonstrated using compressed video with fixed block size of 8x8 pixels.en_US
dc.language.isoenen_US
dc.publisherSpringerNatureen_US
dc.relation.ispartofAdvances in Intelligent Systems and Computingen_US
dc.subjectImage compressionen_US
dc.subjectVideo compressionen_US
dc.subjectCoding schemesen_US
dc.subjectBlocking artifactsen_US
dc.subjectSuper-resolutionen_US
dc.subjectDictionary learning methodsen_US
dc.subjectMachine learning methodsen_US
dc.titleMachine Learning Approach to Blocking Effect Reduction in Low Bitrate Videoen_US
dc.typeBook chapteren_US
dc.relation.conferenceICT Innovations 2015en_US
dc.identifier.doi10.1007/978-3-319-25733-4_18-
dc.identifier.volume399-
dc.identifier.fpage173-
dc.identifier.lpage183-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Electrical Engineering and Information Technologies-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Description SizeFormat 
chp%3A10.1007%2F978-3-319-25733-4_18.pdf1.05 MBAdobe PDFView/Open
Show simple item record

Page view(s)

41
checked on Jul 24, 2024

Download(s)

5
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.