Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/17183
DC FieldValueLanguage
dc.contributor.authorGushev, Marjanen_US
dc.contributor.authorAckovska, Nevenaen_US
dc.contributor.authorZdraveski, Vladimiren_US
dc.contributor.authorStankov, Emilen_US
dc.contributor.authorJovanov, Mileen_US
dc.contributor.authorDinev, Martinen_US
dc.contributor.authorSpasov, Dejanen_US
dc.contributor.authorGui, Xiaoyanen_US
dc.contributor.authorZhang, Yanlongen_US
dc.contributor.authorGeng, Lien_US
dc.contributor.authorZhou, Xiaochuanen_US
dc.date.accessioned2022-03-29T20:09:04Z-
dc.date.available2022-03-29T20:09:04Z-
dc.date.issued2021-11-23-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/17183-
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.titleReview of Drowsiness Detection Machine-Learning Methods Applicable for Non-Invasive Brain-Computer Interfacesen_US
dc.typeProceeding articleen_US
dc.relation.conference2021 29th Telecommunications Forum (TELFOR)en_US
dc.identifier.doi10.1109/telfor52709.2021.9653239-
dc.identifier.urlhttp://xplorestaging.ieee.org/ielx7/9653182/9653156/09653239.pdf?arnumber=9653239-
dc.identifier.fpage1-
dc.identifier.lpage4-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Show simple item record

Page view(s)

68
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.