Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/20081
DC FieldValueLanguage
dc.contributor.authorAndreas Debrouwereen_US
dc.contributor.authorPrangoski, Bojanen_US
dc.contributor.authorJasson Vindasen_US
dc.date.accessioned2022-06-30T17:20:39Z-
dc.date.available2022-06-30T17:20:39Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/20081-
dc.description.abstractFor two types of moderate growth representations of $(\mathbb{R}^d,+)$ on sequentially complete locally convex Hausdorff spaces (including F-representations [J. Funct. Anal. 262 (2012), 667-681], we introduce Denjoy-Carleman classes of ultradifferentiable vectors and show a strong factorization theorem of Dixmier-Malliavin type for them. In particular, our factorization theorem solves [Conjecture 6.; J. Funct. Anal. 262 (2012), 667-681] for analytic vectors of representations of $G =(\mathbb{R}^d,+)$. As an application, we show that various convolution algebras and modules of ultradifferentiable functions satisfy the strong factorization property.en_US
dc.language.isoen_USen_US
dc.publisherElsevier BVen_US
dc.relation.ispartofJ. Funct. Anal. 280 (2021), Article 108831 (31 pages)en_US
dc.subjectMathematics - Functional Analysisen_US
dc.subjectMathematics - Functional Analysisen_US
dc.subjectPrimary 42A85, 46E10, 46E25, Secondary 46F05, 46H05en_US
dc.titleFactorization in Denjoy-Carleman classes associated to representations of $(\mathbb{R}^{d},+)$en_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1016/j.jfa.2020.108831-
dc.identifier.urlhttps://api.elsevier.com/content/article/PII:S0022123620303748?httpAccept=text/xml-
dc.identifier.urlhttps://api.elsevier.com/content/article/PII:S0022123620303748?httpAccept=text/plain-
dc.identifier.volume280-
dc.identifier.issue3-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptFaculty of Mechanical Engineering-
Appears in Collections:Faculty of Mechanical Engineering: Journal Articles
Show simple item record

Page view(s)

72
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.