Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12188/20081
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Andreas Debrouwere | en_US |
dc.contributor.author | Prangoski, Bojan | en_US |
dc.contributor.author | Jasson Vindas | en_US |
dc.date.accessioned | 2022-06-30T17:20:39Z | - |
dc.date.available | 2022-06-30T17:20:39Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12188/20081 | - |
dc.description.abstract | For two types of moderate growth representations of $(\mathbb{R}^d,+)$ on sequentially complete locally convex Hausdorff spaces (including F-representations [J. Funct. Anal. 262 (2012), 667-681], we introduce Denjoy-Carleman classes of ultradifferentiable vectors and show a strong factorization theorem of Dixmier-Malliavin type for them. In particular, our factorization theorem solves [Conjecture 6.; J. Funct. Anal. 262 (2012), 667-681] for analytic vectors of representations of $G =(\mathbb{R}^d,+)$. As an application, we show that various convolution algebras and modules of ultradifferentiable functions satisfy the strong factorization property. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Elsevier BV | en_US |
dc.relation.ispartof | J. Funct. Anal. 280 (2021), Article 108831 (31 pages) | en_US |
dc.subject | Mathematics - Functional Analysis | en_US |
dc.subject | Mathematics - Functional Analysis | en_US |
dc.subject | Primary 42A85, 46E10, 46E25, Secondary 46F05, 46H05 | en_US |
dc.title | Factorization in Denjoy-Carleman classes associated to representations of $(\mathbb{R}^{d},+)$ | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1016/j.jfa.2020.108831 | - |
dc.identifier.url | https://api.elsevier.com/content/article/PII:S0022123620303748?httpAccept=text/xml | - |
dc.identifier.url | https://api.elsevier.com/content/article/PII:S0022123620303748?httpAccept=text/plain | - |
dc.identifier.volume | 280 | - |
dc.identifier.issue | 3 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.dept | Faculty of Mechanical Engineering | - |
Appears in Collections: | Faculty of Mechanical Engineering: Journal Articles |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.