Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/21167
Title: Evaluation of Recurrent Neural Network architectures for abusive language detection in cyberbullying contexts
Authors: Markoski, Filip
Zdravevski, Eftim 
Ljubešić, Nikola
Gievska, Sonja 
Keywords: Deep Learning, NLP, RNN, LSTM, GRU, Abusive Language Detection, Hate Speech, Cyberbullying
Issue Date: 8-May-2020
Publisher: Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University in Skopje, Macedonia
Conference: CIIT 2020
Abstract: Cyberbullying is a form of bullying that takes place over digital devices. Social media is one of the most common environments where it occurs. It can lead to serious long-lasting trauma and can lead to problems with fear, anxiety, sadness, mood, energy level, sleep, and appetite. Therefore, detection and tagging of hateful or abusive comments can help in the mitigation or prevention of the negative consequences of cyberbullying. This paper evaluates seven different architectures relying on Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) gating units for classification of comments. The evaluation is conducted on two abusive language detection tasks, on a Wikipedia data set and a Twitter data set, obtaining ROC-AUC scores of up to 0.98. The architectures incorporate various neural network mechanisms such as bi-directionality, regularization, convolutions, attention etc. The paper presents results in multiple evaluation metrics which may serve as baselines in future scientific endeavours. We conclude that the difference is extremely negligible with the GRU models marginally outperforming their LSTM counterparts whilst taking less training time.
URI: http://hdl.handle.net/20.500.12188/21167
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Files in This Item:
File Description SizeFormat 
CIIT2020_paper_21.pdf580.02 kBAdobe PDFView/Open
Show full item record

Page view(s)

37
checked on Jul 24, 2024

Download(s)

9
checked on Jul 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.