Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/23176
DC FieldValueLanguage
dc.contributor.authorKitanovski, Ivanen_US
dc.contributor.authorDimitrovski, Ivicaen_US
dc.contributor.authorLoshkovska, Suzanaen_US
dc.contributor.authorTrojachanec, Katarinaen_US
dc.date.accessioned2022-09-29T08:33:59Z-
dc.date.available2022-09-29T08:33:59Z-
dc.date.issued2015-01-12-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/23176-
dc.description.abstractThe aim of the paper is to present Content Based Retrieval of MRI based on the brain structure changes characteristic for Alzheimer’s Disease (AD). The approach used in this paper aims to improve the retrieval performance while using smaller number of features in comparison to the descriptor dimensionality generated by the traditional feature extraction techniques. The feature vector consists of the measurements of cortical and subcortical brain structures, including volumes of the brain structures and cortical thickness. Two main stages are required to obtain these features: segmentation and calculation of the quantitative measurements. The feature subset selection is additionally applied using Correlation-based Feature Selection (CFS) method. Euclidean distance is used as a similarity measurement. The retrieval performance is evaluated using MRIs provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Experimental results show that the strategy used in this research outperforms the traditional one despite its simplicity and small number of features used for representation.en_US
dc.publisherSCITEPRESSen_US
dc.subjectCBIR, Alzheimer’s Disease, VOI, Segmentation, Feature Extraction, Feature Selection, MRI, ADNIen_US
dc.titleContent based retrieval of MRI based on brain structure changes in Alzheimer’s diseaseen_US
dc.typeProceedingsen_US
dc.relation.conferenceBIOIMAGING2015-InternationalConferenceonBioimagingen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File Description SizeFormat 
51822.pdf913.83 kBAdobe PDFView/Open
Show simple item record

Page view(s)

24
checked on Jul 24, 2024

Download(s)

3
checked on Jul 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.