Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/25720
DC FieldValueLanguage
dc.contributor.authorGlushica, Bojanen_US
dc.contributor.authorKuhar, Andrijanaen_US
dc.contributor.authorArnautovski Toseva, Vesnaen_US
dc.date.accessioned2023-02-15T10:14:58Z-
dc.date.available2023-02-15T10:14:58Z-
dc.date.issued2021-12-22-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/25720-
dc.description.abstract<jats:p>Laplace’s differential equation is one of the most important equations which describe the continuity of a system in various fields of engineering. As a system gets more complex, the need for solving this equation numerically rises. In this paper we present an accuracy investigation of three of the most significant numerical methods used in computational electromagnetics by applying them to solve Laplace’s differential equation in a two-dimensional domain with Dirichlet boundary conditions. We investigate the influence of discretization on the relative error obtained by applying each method. We point out advantages and disadvantages of the investigated computational methods with emphasis on the hardware requirements for achieving certain accuracy.</jats:p>en_US
dc.publisherAssociation on Communications, Information, Electronic and Energy Systemsen_US
dc.relation.ispartofThe Journal of CIEESen_US
dc.titleAccuracy Investigation of FDM, FEM and MoM for a Numerical Solution of the 2D Laplace’s Differential Equation for Electrostatic Problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.48149/jciees.2021.1.2.5-
dc.identifier.urlhttp://journal.ciees.eu/index.php/ojs/article/download/17/14-
dc.identifier.urlhttp://journal.ciees.eu/index.php/ojs/article/download/17/14-
dc.identifier.volume1-
dc.identifier.issue2-
dc.identifier.fpage26-
dc.identifier.lpage30-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptFaculty of Electrical Engineering and Information Technologies-
Appears in Collections:Faculty of Electrical Engineering and Information Technologies: Journal Articles
Show simple item record

Page view(s)

56
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.