Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/27840
Title: A Unique Mechanochemical Redox Reaction Yielding Nanostructured Double Perovskite Sr2FeMoO6 With an Extraordinarily High Degree of Anti-Site Disorder
Authors: Tóthová, Erika
Düvel, André
Witte, Ralf
Brand, Richard A.
Sarkar, Abhishek
Kruk, Robert
Senna, Mamoru
Da Silva, Klebson Lucenildo
Menzel, Dirk
Girman, Vladimír
Hegedüs, Michal
Baláž, Matej
Makreski, Petre 
Kubuki, Shiro
Kaňuchová, Mária
Valíček, Jan
Hahn, Horst
Šepelák, Vladimír
Issue Date: 16-Mar-2022
Publisher: Frontiers Media SA
Journal: Frontiers in Chemistry
Abstract: <jats:p>Strontium ferromolybdate, Sr<jats:sub>2</jats:sub>FeMoO<jats:sub>6</jats:sub>, is an important member of the family of double perovskites with the possible technological applications in the field of spintronics and solid oxide fuel cells. Its preparation <jats:italic>via</jats:italic> a multi-step ceramic route or various wet chemistry-based routes is notoriously difficult. The present work demonstrates that Sr<jats:sub>2</jats:sub>FeMoO<jats:sub>6</jats:sub> can be mechanosynthesized at ambient temperature in air directly from its precursors (SrO, α-Fe, MoO<jats:sub>3</jats:sub>) in the form of nanostructured powders, without the need for solvents and/or calcination under controlled oxygen fugacity. The mechanically induced evolution of the Sr<jats:sub>2</jats:sub>FeMoO<jats:sub>6</jats:sub> phase and the far-from-equilibrium structural state of the reaction product are systematically monitored with XRD and a variety of spectroscopic techniques including Raman spectroscopy, <jats:sup>57</jats:sup>Fe Mössbauer spectroscopy, and X-ray photoelectron spectroscopy. The unique extensive oxidation of iron species (Fe<jats:sup>0</jats:sup> → Fe<jats:sup>3+</jats:sup>) with simultaneous reduction of Mo cations (Mo<jats:sup>6+</jats:sup> → Mo<jats:sup>5+</jats:sup>), occuring during the mechanosynthesis of Sr<jats:sub>2</jats:sub>FeMoO<jats:sub>6</jats:sub>, is attributed to the mechanically triggered formation of tiny metallic iron nanoparticles in superparamagnetic state with a large reaction surface and a high oxidation affinity, whose steady presence in the reaction mixture of the milled educts initiates/promotes the swift redox reaction. High-resolution transmission electron microscopy observations reveal that the mechanosynthesized Sr<jats:sub>2</jats:sub>FeMoO<jats:sub>6</jats:sub>, even after its moderate thermal treatment at 923 K for 30 min in air, exhibits the nanostructured nature with the average particle size of 21(4) nm. At the short-range scale, the nanostructure of the as-prepared Sr<jats:sub>2</jats:sub>FeMoO<jats:sub>6</jats:sub> is characterized by both, the strongly distorted geometry of the constituent FeO<jats:sub>6</jats:sub> octahedra and the extraordinarily high degree of anti-site disorder. The degree of anti-site disorder <jats:italic>ASD</jats:italic> = 0.5, derived independently from the present experimental XRD, Mössbauer, and SQUID magnetization data, corresponds to the completely random distribution of Fe<jats:sup>3+</jats:sup> and Mo<jats:sup>5+</jats:sup> cations over the sites of octahedral coordination provided by the double perovskite structure. Moreover, the fully anti-site disordered Sr<jats:sub>2</jats:sub>FeMoO<jats:sub>6</jats:sub> nanoparticles exhibit superparamagnetism with the blocking temperature <jats:italic>T</jats:italic><jats:sub>B</jats:sub> = 240 K and the deteriorated effective magnetic moment <jats:italic>μ</jats:italic> = 0.055 <jats:italic>μ</jats:italic><jats:sub>B</jats:sub> per formula unit.</jats:p>
URI: http://hdl.handle.net/20.500.12188/27840
DOI: 10.3389/fchem.2022.846910
Appears in Collections:Faculty of Natural Sciences and Mathematics: Journal Articles

Files in This Item:
File Description SizeFormat 
2022_Front.Chem.pdf2.19 MBAdobe PDFView/Open
Show full item record

Page view(s)

34
checked on Jul 11, 2024

Download(s)

4
checked on Jul 11, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.