Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/27903
DC FieldValueLanguage
dc.contributor.authorTodorovska, Anaen_US
dc.contributor.authorRusevski, Ivanen_US
dc.contributor.authorPeshov, Hristijanen_US
dc.contributor.authorSpirovska, Evaen_US
dc.contributor.authorMarojevikj, Jovanaen_US
dc.contributor.authorAngelovski, Gorasten_US
dc.contributor.authorVodenska, Irenaen_US
dc.contributor.authorChitkushev, Lubomiren_US
dc.contributor.authorTrajanov, Dimitaren_US
dc.date.accessioned2023-09-11T11:30:19Z-
dc.date.available2023-09-11T11:30:19Z-
dc.date.issued2022-08-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/27903-
dc.description.abstractIn a global world, no country, market, or economy is isolated. Interconnectivity is becoming a fundamental feature of the economic systems, including macroeconomic trends, traditional financial markets, and digital markets. Cryptocurrencies, as a new digital asset, are becoming an integral part of the global economy. This study aims to explore the relationships between cryptocurrencies and the traditional financial markets. We develop a methodology for analyzing the relationships between largest cryptocurrencies and selected global market-based economic indicators based on multimodal publicly available datasets incorporating structured numerical and unstructured news and social network data. To find the existence of directional associations we developan explainable AI model that first learns the dependencies between different assets and then explains them in a form understandable by humans. We apply our methodology to analyze connectivity networks of seven cryptocurrencies (Bitcoin, Ethereum, Cardano, Chainlink, Litecoin, Stellar, and Ripple) and seven classical economic indicators, including five marked indexes (BSE, Dow Jones, S\&P500, FTSE, and Hang Seng) and two commodity prices (Oil and Gold).en_US
dc.relation.ispartofAvailable at SSRN 4196995en_US
dc.subjectCryptocurrencies, Classical economic indicators, Networks, Natural Language Processing, Machine Learningen_US
dc.titleInterdependency between Classical Economic Indicators and Crypto-Marketsen_US
dc.typeJournal Articleen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles
Show simple item record

Page view(s)

45
checked on Jul 11, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.