Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/28323
Наслов: | Cryptocurrency Portfolio Diversification Using Network Community Detection | Authors: | Kitanovski, Dimitar Mirchev, Miroslav Chorbev, Ivan Mishkovski, Igor |
Keywords: | Cryptocurrencies Portfolio selection Community detection Financial analysis |
Issue Date: | 22-дек-2022 | Publisher: | IEEE | Проект: | EPMAI | Conference: | 30th Telecommunications Forum (TELFOR) | Abstract: | As of the end of 2013 till now we are witnessing huge volatility and risk in the cryptocurrency market compared to flat currency or stock market. Thus, in this market the portfolio diversification is of big importance in order to reduce volatility and keep the optimal return for the investors. A usual approach for portfolio construction is to keep a balance between returns and volatility, based on their interdependence and individual returns. One way of diversification is employing clustering or community detection algorithms to select a more diverse set of assets. We study the utilization of the Louvain algorithm and affinity propagation for community detection, based on correlation and mutual information between cryptocurrencies, for potential application in portfolio diversification. | URI: | http://hdl.handle.net/20.500.12188/28323 | DOI: | 10.1109/TELFOR56187.2022.9983742 |
Appears in Collections: | Faculty of Computer Science and Engineering: Conference papers |
Files in This Item:
File | Опис | Size | Format | |
---|---|---|---|---|
Cryptocurrency_Portfolio_Diversification_Using_Network_Community_Detection___Telfor_2022.pdf | 1.51 MB | Adobe PDF | View/Open |
Page view(s)
28
checked on 11.7.2024
Download(s)
23
checked on 11.7.2024
Google ScholarTM
Проверете
Altmetric
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.