Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12188/3261
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pavel Dimovski | en_US |
dc.contributor.author | Stevan Pilipovic | en_US |
dc.contributor.author | Jasson Vindas | en_US |
dc.date.accessioned | 2019-10-18T15:32:14Z | - |
dc.date.available | 2019-10-18T15:32:14Z | - |
dc.date.issued | 2015-07-20 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12188/3261 | - |
dc.description.abstract | We study boundary values of holomorphic functions in translation-invariant distribution spaces of type $\mathcal{D}'_{E'_{\ast}}$. New edge of the wedge theorems are obtained. The results are then applied to represent $\mathcal{D}'_{E'_{\ast}}$ as a quotient space of holomorphic functions. We also give representations of elements of $\mathcal{D}'_{E'_{\ast}}$ via the heat kernel method. Our results cover as particular instances the cases of boundary values, analytic representations, and heat kernel representations in the context of the Schwartz spaces $\mathcal{D}'_{L^{p}}$, $\mathcal{B}'$, and their weighted versions. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Informa UK Limited | en_US |
dc.relation.ispartof | Complex Var. Elliptic Equ. 60 (2015), 1169-1189 | en_US |
dc.subject | Mathematics - Functional Analysis | en_US |
dc.subject | Mathematics - Functional Analysis | en_US |
dc.subject | Mathematics - Complex Variables | en_US |
dc.subject | 46F20, 46F15, 32A40 | en_US |
dc.title | Boundary values of holomorphic functions and heat kernel method in translation-invariant distribution spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/17476933.2014.1002399 | - |
dc.identifier.url | http://www.tandfonline.com/doi/pdf/10.1080/17476933.2014.1002399 | - |
dc.identifier.volume | 60 | - |
dc.identifier.issue | 9 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
Appears in Collections: | Faculty of Technology and Metallurgy: Journal Articles |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.