Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/3261
DC FieldValueLanguage
dc.contributor.authorPavel Dimovskien_US
dc.contributor.authorStevan Pilipovicen_US
dc.contributor.authorJasson Vindasen_US
dc.date.accessioned2019-10-18T15:32:14Z-
dc.date.available2019-10-18T15:32:14Z-
dc.date.issued2015-07-20-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/3261-
dc.description.abstractWe study boundary values of holomorphic functions in translation-invariant distribution spaces of type $\mathcal{D}'_{E'_{\ast}}$. New edge of the wedge theorems are obtained. The results are then applied to represent $\mathcal{D}'_{E'_{\ast}}$ as a quotient space of holomorphic functions. We also give representations of elements of $\mathcal{D}'_{E'_{\ast}}$ via the heat kernel method. Our results cover as particular instances the cases of boundary values, analytic representations, and heat kernel representations in the context of the Schwartz spaces $\mathcal{D}'_{L^{p}}$, $\mathcal{B}'$, and their weighted versions.en_US
dc.language.isoenen_US
dc.publisherInforma UK Limiteden_US
dc.relation.ispartofComplex Var. Elliptic Equ. 60 (2015), 1169-1189en_US
dc.subjectMathematics - Functional Analysisen_US
dc.subjectMathematics - Functional Analysisen_US
dc.subjectMathematics - Complex Variablesen_US
dc.subject46F20, 46F15, 32A40en_US
dc.titleBoundary values of holomorphic functions and heat kernel method in translation-invariant distribution spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/17476933.2014.1002399-
dc.identifier.urlhttp://www.tandfonline.com/doi/pdf/10.1080/17476933.2014.1002399-
dc.identifier.volume60-
dc.identifier.issue9-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:Faculty of Technology and Metallurgy: Journal Articles
Show simple item record

Page view(s)

55
Last Week
0
Last month
5
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.