Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/6663
DC FieldValueLanguage
dc.contributor.authorKresoja, Milenaen_US
dc.contributor.authorLužanin, Zoranaen_US
dc.contributor.authorStojkovska, Irenaen_US
dc.date.accessioned2020-01-29T10:40:21Z-
dc.date.available2020-01-29T10:40:21Z-
dc.date.issued2017-02-27-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/6663-
dc.description.abstractIn this paper, stochastic approximation (SA) algorithm with a new adaptive step size scheme is proposed. New adaptive step size scheme uses a fixed number of previous noisy function values to adjust steps at every iteration. The algorithm is formulated for a general descent direction and almost sure convergence is established. The case when negative gradient is chosen as a search direction is also considered. The algorithm is tested on a set of standard test problems. Numerical results show good performance and verify efficiency of the algorithm compared to some of existing algorithms with adaptive step sizes.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relationMinistry of Education, Science and Technology Development of Serbia grant no. 174030en_US
dc.relation.ispartofNumerical Algorithmsen_US
dc.subjectUnconstrained optimizationen_US
dc.subjectStochastic optimizationen_US
dc.subjectStochastic approximationen_US
dc.subjectNoisy functionen_US
dc.subjectAdaptive step sizeen_US
dc.subjectGradient methoden_US
dc.subjectDescent directionen_US
dc.titleAdaptive stochastic approximation algorithmen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1007/s11075-017-0290-4-
dc.identifier.urlhttp://link.springer.com/article/10.1007/s11075-017-0290-4/fulltext.html-
dc.identifier.urlhttp://link.springer.com/content/pdf/10.1007/s11075-017-0290-4.pdf-
dc.identifier.urlhttp://link.springer.com/content/pdf/10.1007/s11075-017-0290-4.pdf-
dc.identifier.volume76-
dc.identifier.issue4-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptFaculty of Natural Sciences and Mathematics-
Appears in Collections:Faculty of Natural Sciences and Mathematics: Journal Articles
Show simple item record

Page view(s)

89
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.