Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/14685
Наслов: | Credit Risk Model Based on Central Bank Credit Registry Data | Authors: | Fisnik Doko Kalajdziski, Slobodan Mishkovski, Igor |
Keywords: | credit risk; credit registry; data science | Issue Date: | 23-мар-2021 | Publisher: | Multidisciplinary Digital Publishing Institute | Проект: | Разбирање на природни јазици во информации од вести преку користење на Трансформер архитектурата и каузални декодери | Journal: | J. Risk Financial Manag. | Abstract: | Data science and machine-learning techniques help banks to optimize enterprise operations, enhance risk analyses and gain competitive advantage. There is a vast amount of research in credit risk, but to our knowledge, none of them uses credit registry as a data source to model the probability of default for individual clients. The goal of this paper is to evaluate different machine-learning models to create accurate model for credit risk assessment using the data from the real credit registry dataset of the Central Bank of Republic of North Macedonia. We strongly believe that the model developed in this research will be an additional source of valuable information to commercial banks, by leveraging historical data for all the population of the country in all the commercial banks. Thus, in this research, we compare five machine-learning models to classify credit risk data, i.e., logistic regression, decision tree, random forest, support vector machines (SVM) and neural network. We evaluate the five models using different machine-learning metrics, and we propose a model based on credit registry data from the central bank with detailed methodology that can predict the credit risk based on credit history of the population in the country. Our results show that the best accuracy is achieved by using decision tree performing on imbalanced data with and without scaling, followed by random forest and linear regression | URI: | http://hdl.handle.net/20.500.12188/14685 | DOI: | 10.3390 |
Appears in Collections: | Faculty of Computer Science and Engineering: Journal Articles |
Files in This Item:
File | Опис | Size | Format | |
---|---|---|---|---|
jrfm-14-00138.pdf | 2.68 MB | Adobe PDF | View/Open |
Page view(s)
66
checked on 24.7.2024
Download(s)
56
checked on 24.7.2024
Google ScholarTM
Проверете
Altmetric
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.