Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/17150
Наслов: Local Hybrid SVMDT Classifier
Authors: Kitanovski, Ivan 
Madjarov, Gjorgji 
GJorgjevikj, Dejan 
Issue Date: ное-2011
Publisher: IEEE
Conference: 19th Telecommunications Forum (TELFOR) 2011
Abstract: Support vector machines are among the most precise classifiers available, but this precision comes at the cost of speed. There have been many ideas and implementations for improving the speed of support vector machines. While most of the existing methods focus on reducing the number of support vectors in order to gain speed, our approach additionally focuses on reducing the number of samples, which need to be classified by the support vector machines in order to reach the final decision about a sample class. In this paper we propose a novel architecture that integrates decision trees and local SVM classifiers for binary classification. Results show that there is a significant improvement in speed with little or no compromise to classification accuracy.
URI: http://hdl.handle.net/20.500.12188/17150
DOI: 10.1109/TELFOR.2011.6143658
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Прикажи целосна запис

Page view(s)

40
checked on 24.7.2024

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.