Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/22377
Наслов: Knowledge-Based Approach to Modeling Urban Dynamics
Authors: Gievska, Sonja 
Lameski, Petre 
Keywords: Pedestrian modeling · Bayesian inference · Multi-agent simulation
Issue Date: 9-јул-2017
Publisher: Springer, Cham
Conference: International Conference on Distributed, Ambient, and Pervasive Interactions
Abstract: The model representing the complexity of the pedestrian mobility has to incorporate the nature of the modeled phenomenon by accounting the interde‐ pendence between human behavior and urban environment. Our efforts are directed towards correlating emergent behavior patterns of different types of pedestrians to contextual knowledge that will help us map realistic pedestrian behavior into agent’s decision making capabilities. We propose that agent’s beliefs, goals and decision-making strategies should be derived directly from the integrated urban knowledge. Causal probabilistic models that are based on Baye‐ sian inference are proposed as a potential solution to some of the challenges in the pedestrian agent modeling.
URI: http://hdl.handle.net/20.500.12188/22377
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Files in This Item:
File Опис SizeFormat 
978-3-319-58697-7_18.pdf838.62 kBAdobe PDFView/Open
Прикажи целосна запис

Page view(s)

38
checked on 24.7.2024

Download(s)

11
checked on 24.7.2024

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.