Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/23142
Наслов: Content based image retrieval for large medical image corpus
Authors: Strezoski, Gjorgji
Stojanovski, Dario
Dimitrovski, Ivica 
Madjarov, Gjorgji
Keywords: image processing, opponent SIFT, medical image retrieval, fisher vectors, PCA, product quantization
Issue Date: 22-јун-2015
Publisher: Springer, Cham
Conference: International Conference on Hybrid Artificial Intelligence Systems
Abstract: In this paper we address the scalability issue when it comes to Content based image retrieval in large image archives in the medical domain. Throughout the text we focus on explaining how small changes in image representation, using existing technologies leads to impressive improvements when it comes to image indexing, search and retrieval duration. We used a combination of OpponentSIFT descriptors, Gaussian Mixture Models, Fisher kernel and Product quantization that is neatly packaged and ready for web integration. The CBIR feature of the system is demonstrated through a Python based web client with features like region of interest selection and local image upload.
URI: http://hdl.handle.net/20.500.12188/23142
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Files in This Item:
File Опис SizeFormat 
medical_image_retrieval_v3.pdf6.53 MBAdobe PDFView/Open
Прикажи целосна запис

Page view(s)

25
checked on 24.7.2024

Download(s)

9
checked on 24.7.2024

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.