Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/23171
Наслов: Current Trends in Deep Learning for Earth Observation: An Open-source Benchmark Arena for Image Classification
Authors: Dimitrovski, Ivica 
Kitanovski, Ivan 
Kocev, Dragi
Simidjievski, Nikola
Issue Date: 14-јул-2022
Journal: arXiv preprint arXiv:2207.07189
Abstract: We present AiTLAS: Benchmark Arena – an open-source benchmark framework for evaluating state-of-the-art deep learning approaches for image classification in Earth Observation (EO). To this end, we present a comprehensive comparative analysis of more than 400 models derived from nine different state-of-the-art architectures, and compare them to a variety of multi-class and multi-label classification tasks from 22 datasets with different sizes and properties. In addition to models trained entirely on these datasets, we also benchmark models trained in the context of transfer learning, leveraging pre-trained model variants, as it is typically performed in practice. All presented approaches are general and can be easily extended to many other remote sensing image classification tasks not considered in this study. To ensure reproducibility and facilitate better usability and further developments, all of the experimental resources including the trained models, model configurations and processing details of the datasets (with their corresponding splits used for training and evaluating the models) are publicly available on the repository: https://github.com/biasvariancelabs/aitlas-arena.
URI: http://hdl.handle.net/20.500.12188/23171
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles

Files in This Item:
File Опис SizeFormat 
2207.07189.pdf8.29 MBAdobe PDFView/Open
Прикажи целосна запис

Page view(s)

47
checked on 24.7.2024

Download(s)

32
checked on 24.7.2024

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.