Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/27679
Наслов: Crop Type Prediction Across Countries and Years: Slovenia, Denmark and the Netherlands
Authors: Merdjanovska, Elena
Kitanovski, Ivan 
Kokalj, Žiga
Dimitrovski, Ivica 
Kocev, Dragi
Keywords: Crop Type Prediction , Deep Learning , Time series classification , Benchmarking of performance
Issue Date: 17-јул-2022
Publisher: IEEE
Conference: IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium
Abstract: Crop type prediction is a very relevant and a very challenging task. The increasing availability of high-quality satellite imagery and machine learning have enabled the development of automatic crop type classification methods. In this paper, we present a crop type prediction data suite that consists of crop type information from three countries (Denmark, the Netherlands, and Slovenia) across three years (2017, 2018 and 2019). By considering the complex challenges contained by this data suite, we investigate the robustness of 7 deep learning methods used for crop type prediction (TempCNN, MSResNet, InceptionTime, OmniscaleCNN, LSTM, StarRNN, and Transformer networks). The comprehensive experiments reveal that the recurrence-based methods perform the best (with LSTM being the best performing). The methods can achieve very good predictive performance - up to a weighted F1 score of 0.8432.
URI: http://hdl.handle.net/20.500.12188/27679
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers

Прикажи целосна запис

Page view(s)

30
checked on 24.7.2024

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.