Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/29381
Наслов: | Measurement-oriented deep-learning workflow for improved segmentation of myelin and axons in high-resolution images of human cerebral white matter | Authors: | Janjic, Predrag Petrovski, Kristijan Dolgoski, Blagoja Smiley, John Zdravkovski, Panche Pavlovski, Goran Jakjovski, Zlatko Davcheva, Natasha Poposka, Verica Stankov, Aleksandar Rosoklija, Gorazd Petrushevska, Gordana Kocarev, Ljupco Dwork, Andrew J |
Issue Date: | окт-2019 | Publisher: | Elsevier BV | Journal: | Journal of Neuroscience Methods | Abstract: | Standard segmentation of high-contrast electron micrographs (EM) identifies myelin accurately but does not translate easily into measurements of individual axons and their myelin, even in cross-sections of parallel fibers. We describe automated segmentation and measurement of each myelinated axon and its sheath in EMs of arbitrarily oriented human white matter from autopsies. | URI: | http://hdl.handle.net/20.500.12188/29381 | DOI: | 10.1016/j.jneumeth.2019.108373 |
Appears in Collections: | Faculty of Medicine: Journal Articles |
Прикажи целосна запис
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.