Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/3261
Title: Boundary values of holomorphic functions and heat kernel method in translation-invariant distribution spaces
Authors: Pavel Dimovski
Stevan Pilipovic
Jasson Vindas
Keywords: Mathematics - Functional Analysis
Mathematics - Functional Analysis
Mathematics - Complex Variables
46F20, 46F15, 32A40
Issue Date: 20-Jul-2015
Publisher: Informa UK Limited
Journal: Complex Var. Elliptic Equ. 60 (2015), 1169-1189
Abstract: We study boundary values of holomorphic functions in translation-invariant distribution spaces of type $\mathcal{D}'_{E'_{\ast}}$. New edge of the wedge theorems are obtained. The results are then applied to represent $\mathcal{D}'_{E'_{\ast}}$ as a quotient space of holomorphic functions. We also give representations of elements of $\mathcal{D}'_{E'_{\ast}}$ via the heat kernel method. Our results cover as particular instances the cases of boundary values, analytic representations, and heat kernel representations in the context of the Schwartz spaces $\mathcal{D}'_{L^{p}}$, $\mathcal{B}'$, and their weighted versions.
URI: http://hdl.handle.net/20.500.12188/3261
DOI: 10.1080/17476933.2014.1002399
Appears in Collections:Faculty of Technology and Metallurgy: Journal Articles

Show full item record

Page view(s)

55
Last Week
0
Last month
5
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.