Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/6664
Наслов: | Regularized least-square optimization method for variable selection in regression models | Authors: | Dimovski, Marko Stojkovska, Irena |
Keywords: | linear regression, regression models, least square method, regularization, penalty functions. | Issue Date: | 1-јан-2017 | Publisher: | Union of Mathematicians of Macedonia | Journal: | Matematichki Bilten | Abstract: | A new type of regularization in least-square optimization for variable selection in regression models is proposed. Proposed regularization is suitable for regression models with equal or at least comparable regressors’ influence. Consistency of the estimator of the regression parameter under suitable assumptions is shown. Numerical results demonstrate efficiency of the proposed regularization and its better performance compared to existing regularization methods. | URI: | http://hdl.handle.net/20.500.12188/6664 |
Appears in Collections: | Faculty of Natural Sciences and Mathematics: Journal Articles |
Files in This Item:
File | Опис | Size | Format | |
---|---|---|---|---|
REGULARIZED LEAST-SQUARE OPTIMIZATION METHOD FOR VARIABLE SELECTION IN REGRESSION MODELS.pdf | Journal Article | 250.45 kB | Adobe PDF | ![]() View/Open |
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.